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In a recent paper, Benzi et al. [ Universita di Roma, Report No. ROM 2F/92/54 (unpublished)] pro-
posed that an extensive scaling region can be observed—even at moderate Reynolds numbers—when
the structure functions of arbitrary order are plotted against the third-order structure function, and that
the scaling region in such plots encompasses both inertial and dissipative ranges. This notion of extend-
ed self-similarity is analyzed here, and it is found that the concept is valid when it entails low-order
structure functions, but that the scaling in the inertial and dissipation regions differs clearly for high or-
ders. The same is true also for moments of the absolute value of velocity increments.

PACS number(s): 05.45.+b, 02.50.—r, 03.40.Gc, 47.27.—1i

Much work has been devoted in the last few decades to
the measurement and modeling of the scaling of structure
functions in turbulent flows. The structure function of
order n is defined as (Au(r)*), where Au(r)
=u(x+r)—u(x) and u(x) is the velocity component at
the position x parallel to the relative displacement,
r=|r|. For r in the inertial range of scales, 7 <<r <<L
(where 7 is the Kolmogorov scale and L is the outer
scale), the expectation [1,2] is that {Au(r)") ~r§". This
scaling of the structure functions is an indication of scale
invariance in turbulence.

In practice, the inertial range is usually defined as the
region in which Kolmogorov’s £ law [3] holds, namely,

(Au(r)?)=—4(e)r, (1

where (&) is the average energy dissipation rate per unit
mass €. The larger the Reynolds number, the larger is
this range. For the low-to-moderate Reynolds-number
turbulence with which one often deals, the inertial scaling
range is uncomfortably small.

In a recent paper [4], Benzi et al. made an intriguing
proposal for extending the region of observed scale simi-
larity. Instead of plotting the logarithm of the structure
functions against logy(7), they plotted them against the
logarithm of the modulus of the third-order structure
function. Since the latter should scale as r [Eq. (1)] in the
inertial range, it follows that such a plot should be similar
to plots of log,ol ( Au(r)")| versus log;o(7). According to
Benzi et al., the advantage of their proposal is that the
scaling region extends to the dissipative range, so that the
inertial-range relations

[CAu(r)™Y | =M, | Au(r)?)]|* (2a)

hold almost all the way to 7. Here M, are constants in-
dependent of . In Ref. [4], it was stated that this is true
also for moments of the absolute value of velocity incre-
ments. The equivalent relations in this case are

(Au (M"Y =N, (|Au(r?])o (2b)

where the constants N, are independent of r. For brevi-
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ty, the two schemes (2a) and (2b) will be referred to, re-
spectively, as case C (classical case) and case A4 (the case
with absolute values). The relation between the ex-
ponents in Egs. (2a) and (2b) is not known a priori. Al-
though it is quite often implied that they are the same
(e.g., Ref. [4]), it will be shown here that they differ at
least in one respect.

A precedent to Eq. (2a) was put forward by Obukhov
in 1949 (Ref. [1], p. 403). Assuming the skewness of the
longitudinal  velocity increment S(r)=(Au(r)’)/
{(Au(r)?)3/? to be a (negative) constant independent of r,
Obukhov rewrote the Kolmogorov equation for the
third-order structure function [3] as a closed equation for
the second-order structure function. This closure
scheme, however, has the drawback of yielding a
negative-energy spectrum for a part of the wave-number
range. Equation (2) with n =2 can be considered a
refinement of Obukhov’s assumption, where the exponent
£, incorporating small-scale intermittency replaces the
classical Kolmogorov value [5] of 2. Further, Egs. (2a)
and (2b) extend the assumption to all » =2, and hence are
more ambitious.

Benzi et al. showed evidence for this so-called extend-
ed self-similarity by plotting {|Au(r)"|) versus
(|Au(r)}|) for n =2. They stated that similar plots for
higher n would allow unambiguous evaluation of the ex-
ponents £¥, and presented data up to order 8. They fur-
ther stated that the same results would hold if | { Au(r)")|
were plotted against [ Au(r)®)].

Since the notion of extended self-similarity, if true, is
potentially important, we have repeated the measure-
ments of Benzi et al. using velocity data at a moderate
Reynolds number in a turbulent boundary layer on a flat
plate. We had previously [6] obtained very long data
records (107 sample points), which allowed us to obtain
converged moments of high order (at least up to the or-
der 15) [7]. The analysis of these data reveals that, for
low-order moments, a single fit suffices (within statistical
uncertainties) for dissipative as well as inertial ranges.
However, as the order of the moment increases, the iner-
tial and dissipation regions separate out, and the extend-
ed self-similarity does not hold. For case C, the scaling
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exponents within the dissipative range are given by n /3,
at least up to the order of the moment considered here;
Benzi et al. termed them as ‘“naive” values in the sense
that they are to be expected for » ~7. Further, the ex-
ponents in the inertial range are nonmonotonic with odd-
and even-order values falling on separate curves. Thus a
plot of log;o| { Au(r)")| versus log,o| { Au(r)*)| consists of
one linear region of slope n /3 for small r and another
linear region of slope &, for r in the inertial range, joined
by a smooth transitional region. The §,’s for small
values of n (say, n <4) are not far from n /3, and so the
structure-function plots appear to have a single straight
line; however, the differences between the two regimes be-
come increasingly apparent for higher n. The situation is
similar for the case A: plots of log;o{|Au(r)"|) versus
log,o{ |Au(r)}|) have slopes of (n /24, ,)/(3/2+Es5)
in the dissipation range, and smoothly merge with the
inertial scaling, Eq. (2b). Again, the differences between
the two slopes are clear when high-order moments are
considered. In spite of this partially negative conclusion
about the extended self-similarity, this novel way of plot-
ting structure functions possesses some interesting new
features, which we shall explore below.

Dissipative range, case C: A Taylor expansion to first
order in r yields ( Au(r)*) ={(du /dx)")r", and we trivi-
ally have

logol  Au(r)")| =logol { (du /dx)" )| +n log(7) . 3)

By solving Eq. (3) with n =3 for log,y(7) and substituting
log,o(7) back into Eq. (3), it is immediately seen that

log ol { Au(r)*) | =log ol (du /dx)")|

—%log10| ((du /dx)*)|

r
3
It can be expected that Eq. (4) will be valid in the range
of r~n.

To determine the scaling for a more extensive range of
r values, we expand Au(r) to third order in 7:
du d’ur®  d’ur’

T2

+—log ol { Au(r)®)]| . 4)

n

>. ()

Expanding the right-hand side of Eq. (5) and systemati-

CAutrm =( -

cally retaining terms to order r" *+2 we obtain
(Au(r)"y=A,r"+B,r"t'+C,r"*?, (6)
where
n n—1
du n/d*u |du
= —_— = — | — 7
a=( | % > 5= ) @
and
d3 d n—1
n u u
=njeujau (8)
Cn 6<dx3 dx )
2 2 n—2
+ n(n—l)( d‘u du >
8 dx2 dx ’
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It can be easily shown that B, =0, and that Eq. (8) can be
reduced to

n—1
) . (9)

L( d’u
In the dissipation region, it is reasonable to take
d/dx=0(n"1), so that

dx3
d3u _K'(x) du
dx3 7 dx '
The proportionality factor K'(x) can be either positive or

negative, and its magnitude is of order of unity. Equation
(9) then becomes
n

where the constant K incorporates the integrated effect
on K’, and is smaller than K’. For n =2 it can be
rigorously shown that K =S /v60~0. 06, where S is the
velocity derivative skewness. From measurement, K’ was
found to be roughly about 0.1.

For an additional justification of Eq. (10), let us first
note that du /dx ~€'/? in the dissipation range, so that
d /dx(du /dx)~(1/¢'/?)d /dx(e). In the spirit of the p
model [9], we can write €(x)=({e)L/M)py """ Px —1Pi>
and e(x +17)=e)L/n)p, - px—1(1—p;), where the
p;’s assume values of 0.3 or 0.7 with equal probability,
and n/L =27, Therefore,

(1-—2pk)
I— 1

du

Cn= dx

" 24

(10)

du

= 2y
|C,| (K/n)24 dx

= ZL
(K /)5l 4,0, 4D

4 (e)~ x), (12)
dx Pk
showing that d /dx(du /dx)~(e'/?/7), and d /dx(d*u /
dx?)~(e'?/m?)~1/m*(du /dx), as ascertained before.
Notice that the term (1—2p,)/p, is of the order unity,
and can be positive or negative, just as K'(x) in Eq. (10)
above.

Returning now to Eq. (6), we first note that

[{Au(r)*)|=|A4,|[1—n(K /24)(r /9)*]. Therefore,

logol ( Au(r)")|=log ol 4, | +n log(r)

2
r

n

1——K—n (13)

+1og;o 2

Solving for logo(7) with n =3 in Eq. (13) and replacing
this expression for log,o(7) back into the equation, we ob-
tain

log ol (Au(r)") | =logol 4, — -;Lloglol A,

n
3

provided logo[1—(K /24)n(r /n)*]~ —(K /24)n(r /q)?
is smaller than, say, 0.5. For K ~0.1 and n =38, Eq. (14)
can be expected to be valid up to r ~ 5.

Equation (14) is identical [10] to Eq. (4), showing that
the naive scaling occurs over a larger range than might
be expected from first-order Taylor-series expansion.
Clearly, if the inertial and dissipative ranges possess the
same scaling, the only consistent scenario is for the iner-

+ —logol (Au(r)*) |, (14)
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tial range exponents to be the Kolmogorov values of n /3.

Dissipative range, case A: If the absolute value of odd-
order velocity increments is taken before the averaging
operation, the averages of various terms in Eq. (5) cannot
be obtained as before and B,,,;70. We proceed via
Kolmogorov’s refined similarity hypotheses [11] accord-
ing to which

Au(r)=V(re,)V?, (15)

where €, is the average of € over an interval of length 7,
and V in the inertial range is a universal stochastic vari-
able independent of r and €,. We are now interested in
Eq. (15) for r in the dissipative range, where, again ac-
cording to the refined similarity hypothesis, V should de-
pend only on the local Reynolds number Re,
=r(re,)!”3/v. Although we now know that this is not
quite correct [8], a good approximation [12] is to assume
that ¥V is distributed wuniformly on the interval
[—Re,/15)'/%, (Re, /15)!/2]. It can be shown [13] that
the bounds of this interval for V are rigorous. We then
find that the expected value of |Au(r)"| conditioned on
re, is

(|Au(r)||re, ) ~r(re, )% . (16)

Taking now the expected value with respect to re,, and
using the relation [9] that {(rg,)?) ~r§3", we find that

n/2+§3n/2

(Aur)™) ~r (17)

Solving Eq. (17) for r with n =3 and replacing r back into
it, we find that

CAu(ry ]y ~(|aur?)yP (18)

where B,=(n/2+&5,,,)/(3/2+&,,,). Note that these
exponents differ from the corresponding exponents for
the case C because we plot {|Au(r)"|) against the third-
order moment of the absolute value of the velocity incre-
ment.

Inertial range: Returning to Eq. (15), where the sto-
chastic variable V is assumed to be independent of re,,
we have

QAu(ry )y =V ) (re )1 ?) ~E r' "
[CAu(ry) | =[{ V™) |{(re,)1?) ~F,r'" .

Within the constraints of the refined similarity hy-
pothesis, the scaling exponents are the same for both
cases A and C. As we shall see shortly, the two sets of
exponents are not the same (although close), thus
reflecting that the refined similarity hypothesis is not ex-
act.

Separation of the scaling regimes: To illustrate the two
scaling regimes distinguished so far, let us consider the
eighth-order moment. The qualitative results are the
same for all the other moments. Figure 1 is a plot of
[{Au(r)®)| versus |{ Au(r)?)|, where it is shown that the
straight-line fits for the dissipative and the inertial ranges
yield slopes of 2.66 and 2.05, respectively. It is indeed
possible to obtain a compromise fit for a single slope that
spans both ranges. The slope then is 2.49. However, it is
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FIG. 1. Plots of log,o{ Au®) vs log;o|{Au3)|. The first seven
points (that span the dissipative range) and the following seven
points (that span the inertial range) are fitted separately and
shown as dashed lines. The smaller slope corresponds to the
inertial range is 2.05. The greater slope is 2.66 and corresponds
to the dissipative range.
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FIG. 2. Local slopes of the plot of Fig. 2, as a function of
logio(7/n). The two regions where the local slope is approxi-
mately constant correspond to the dissipative and inertial
ranges. The dashed lines correspond to slopes of 2.66, 2.49, and
2.05. The intermediate value is the slope of a brute-force
straight-line fit to the entire range of data.
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FIG. 3. Plots of log,o{|Au(r)|®) vs log,o{ |Au(r)|*). The first
seven points (that span the dissipative range) and the following
seven points (that span the inertial range) are fitted separately
and shown as dashed lines. The smaller slope corresponds to
the inertial range and is 2.12. The greater slope is 2.42 and cor-
responds to the dissipative range.
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FIG. 4. Local slopes of the plot of Fig. 3, as a function of
logio(r /1). The two regions where the local slope is approxi-
mately constant correspond to the dissipative and inertial
ranges. The dashed lines correspond to slopes of 2.42, 2.31, and
2.12. As in Fig. 2, the intermediate value is the slope of a
brute-force straight-line fit to the entire range of data.

misleading to do so, as can be seen in Fig. 2, which shows
a plot of the local slope d log|(Au r¥y|/
dlogo|{ Au(r)*)| as a function of logs(7). Two flat re-
gions can be observed, corresponding to the separate scal-
ing regimes of Fig. 1. The compromise slope of Fig. 1
corresponds to the intermediate horizontal line in Fig. 2.
Two separate scaling regions indeed appear to be evident.
Figures 3 and 4 are the result of a similar analysis for
the case A. Again, two scaling regimes can be seen.
Figure 5 shows a summary of the scaling exponents
measured. The circles and diamonds correspond, for case
C, to the dissipative and inertial ranges, respectively.
The solid line with slope n /3 is the prediction for the
slope in the dissipative range. The slight departure ob-
served from this line is within the uncertainty of mea-
surements. Squares and crosses correspond to case A.
The dotted line corresponds to 3, defined after Eq. (18),
and we used the p model [9] to represent the function §,
(dashed line). Note, in particular, that the scaling ex-
ponents for even- and odd-order structure functions

FIG. 5. Scaling exponents &, in I(Au(r)")|~\(Au(r)3)|g"
for the dissipative range (circles) and the inertial range (dia-
monds) with their error bars. The solid line is n/3 and the
dashed line is £, from the p model [9]. The squares and crosses

are the scaling exponents in {|Au"|)~(|Au?| ) " for the dissi-
pative and inertial ranges, respectively. The dotted line corre-
sponds to the exponents 3, defined after Eq. (18).

behave differently for case C; the odd-order moments fall
on a curve that is distinct from that connecting even-
order ones.

In conclusion, the present results show that, while the
notion of an extended range of scaling is not obtained for
high-order moments, it helps highlight the existence of
two distinct scaling regions. Different scaling exponents
are obtained, depending on whether one considers the
classical structure functions or moments of absolute
values of velocity increments. In either case, deviations
from the Kolmogorov scaling appear real in the inertial
range.
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